Morphology of a self-doped conducting oligomer for green energy applications.
نویسندگان
چکیده
A recently synthesized self-doped conducting oligomer, salt of bis[3,4-ethylenedioxythiophene]3thiophene butyric acid, ETE-S, is a novel promising material for green energy applications. Recently, it has been demonstrated that it can polymerize in vivo, in plant systems, leading to a formation of long-range conducting wires, charge storage and supercapacitive behaviour of living plants. Here we investigate the morphology of ETE-S combining the experimental characterisation using Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) and atomistic molecular dynamics (MD) simulations. The GIWAXS measurements reveal a formation of small crystallites consisting of π-π stacked oligomers (with the staking distance 3.5 Å) that are further organized in h00 lamellae. These experimental results are confirmed by MD calculations, where we calculated the X-ray diffraction pattern and the radial distribution function for the distance between ETE-S chains. Our MD simulations also demonstrate the formation of the percolative paths for charge carriers that extend throughout the whole structure, despite the fact that the oligomers are short (6-9 rings) and crystallites are thin along the π-π stacking direction, consisting of only two or three π-π stacked oligomers. The existence of the percolative paths explains the previously observed high conductivity in in vivo polymerized ETE-S. We also explored the geometrical conformation of ETE-S oligomers and the bending of their aliphatic chains as a function of the oligomer lengths.
منابع مشابه
Synthesis and characterization of Ag doped Cobalt Ferrite nanocomposite
Nanomaterials are attracted a great deal of attention from scientific community due to its unique properties and applications. The small size ferrites have opened the door for intensive research to utilize their properties for biomedical applications. Cobalt ferrite nanomaterials and its silver doped (Ag-doped) nanocomposites have been prepared using solid state combustion method. This combusti...
متن کاملFacile Magnesium Doped Zinc Oxide Nanoparticle Fabrication and Characterization for Biological Benefits
Zinc oxide (ZnO) is the most common and widely utilized nanomaterial for biological applications due to their unique characteristics, such as biocompatibility, biosafety and antimicrobial along with thermal stability and mechanical strength. Magnesium (Cu) is considered as a significant dopant for ZnO due to their almost similar ionic radii and their role in biological activitie...
متن کاملSonochemical Green Method for Preparation of Mg-Doped ZnO Nanostructures in Water with Enhanced Photocatalytic Activity
In this work, Mg-doped ZnO nanostructures were prepared in water under ultrasonic irradiation for 60 min without using any organic compounds or post preparation treatments. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-ray (EDX), diffuse reflectance spectroscopy (DRS...
متن کاملPreparation of Nitrogen-Doped Graphene By Solvothermal Process as Supporting Material for Fuel Cell Catalysts
Development of efficient electrocatalysts for oxygen reduction reaction (ORR) is one of the most important issues for optimizing the performance of fuel cells and metal-air batteries. The introduction of nitrogen into carbon nanostructures has created new pathways for the development of non-precious electrocatalysts in fuel cells. In this work, nitrogen-doped graphene (NG) was synthesized by a ...
متن کاملMechanochemical Synthesis and Characterization of N-doped TiO2 for Photocatalytic Degradation of Caffeine
The present study reports the synthesis of N-doped TiO2 photocatalyst for the degradation of caffeine using mechanochemical grinding method from the mixture of titania/urea followed by calcination at 400 ⁰C. The phase composition, particle size, surface area, morphology and optical properties...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 9 36 شماره
صفحات -
تاریخ انتشار 2017